
JOURNAL OF APPLIED POLYMER SCIENCE VOL. I, ISSUE NO. 3, PAGES 300-309 (1959) 

Molecular Weight Distribution and Polymerization Kinetics in 
Some New Catalytic Processes 

C. MUSSA I.V. 

Montecatini S.p.A. and Istituto Chimico 
dell’Universith d i  Torino, Italy 

I. INTRODUCTION 
The purpose of the present work is to suggest an 

interpretation of the most outstanding features of 
the molecular weight (MW) distributions observed 
in low pressure polyethylene (LPP).’+ 

Such interpretation is based on a number of as- 
sumptions; the first of which is that the general 
scheme of the polymerization mechanism proposed 
by Natta and co-worker~~-*~ for stereospecific 
polymerization, particularly of propylene, can be 
accepted also in the case of the LPP. 

It is observed, in this connection, that this 
polymerization mechanism has been already cor- 
related (e.g., see refs. 9,20-22) to Ziegler’s catalyst 
system and to its performance in the case of poly- 
ethylene. Furthermore, it has been observed by 
Natta and co-workers16 that the polymerization 
mechanisms of different stereoisomeric fractions 
seem to be similar, from a kinetic point of view, 
independent of their steric features. Finally, it 
a p p e a r ~ l ~ ~ * ~  that isotactic polypropylene also has 
a broad MW distribution. 

11. OUTSTANDING FEATURES OF THE MW 
DISTRIBUTlON OF LPP 

Feature A 

In the majority of the LPP samples examined 
until now, the experimental points representing the 
cumulative weight distribution (CWD) as a func- 
tion of the degrees of polymerization (DP) tend 
towards a straight-line alignment in a particular 
coordinate system. In  this coordinate system, the 
cumulative weight fractions are plotted in a prob- 
ability scale (calculated by means of the normal 
error function) and the DP (which in the following 
formulas are indicated by x )  are plotted in a loga- 
rithmic scale. Such a coordinate system, namely a 
probability chart having a logarithmic scale, will 
be called here: “prob-log plot.” It is evident 

that straighbline graphs are also obtained when 
the CWD are given, instead of as a function of x, 
as a function of any measurable quantity y satis- 
fying the following conditions: (a) It is a limit 
value for zero interaction of the macromolecules 
with each other (e.g., for zero concentration, if y 
is a solution property). (b)  It is related to the 
DP  by a relationship such as 

y = Kx“ (1) 
In most practical instances y is the intrinsic 

viscosity or the inherent viscosity. But other 
measurable quantities, such as the sedimentation 
constant or the translational diffusion coefficient, 
may be convenient for the investigation of MW 
distribution. 24 

The fact that the MW distribution has often 
been found to be “broad” will not be considered 
the most important feature here, but merely as a 
particular case of Feature A occurring when, in 
the prob-log plot, the slope of the straight-line 
graph on the probabilistic axis is steep. This is 
also true for the feature, particularly stressed by 
other authors, that unusually high percentages of 
very low MW species are often present in the 
polymers considered here. In the writer’s opinion 
the fundamental feature is the more general analy- 
tical one which has been termed “Feature A.” 
This feature becomes more evident and can be 
subjected to more reliable experimental control 
when the MW distribution is “broad.” But, in 
principle, broad as well as narrow MW distribu- 
tions can be expected when Feature A is verified. 

The following differential weight distribution 
(DWD) formula is now suggested as a general DWD 
formula which satisfies the condition of being in 
agreement with Feature A : 

w(x)dx = Ax” exp { - (I In E)’} dx (2) 
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where n, 20,  y, are distribution parameters, and A is 
a normalization factor. Under the usual normaliz- 
ation condition 

sd” w(x)dx = 1 (3) 

we get 

It is immediately seen that by introducing the 
auxiliary variable : 

t = [(2)’/’/rI (In W X O )  - [ ( n  + 1)/21Y2) (5) 
eq. (2) becomes 

w(t)dt = [1 / (2  a)’”] exp { - tn/2)dt  (6) 

which is the normal error function. Since the 
auxiliary variable t is a linear function of In x, it 
follows that the CWD obtained from eq. (2) can 
be represented by straight lines in a prob-log chart. 

The advantages of using straight line plots of the 
experimental CWD data have been already illus- 
trated.’, 39 5, ‘s 25--28 The practical rules already 
given5 can be readily extended to the generalized 
DWD eq. (2) .  In subsequent work a detailed 
analysis of experimental data by means of this 
kind of plot will be given; for now the following 
can be stated: ( 1 )  the slope s of the straight-line 
graphs on the probabilistic axis (x = 0 or y = 0) 
is given by 

s = 7/(2)l’* (7) 

s’ = ay/(2)’/4 (7’) 

or 

depending on whether the CWD data are given as 
a function of x or as a function of y. (2)  The 
intersection of the straight-line graph with the log- 
arithmic axis (t  = 0)  is located at a value c = xl/, 
(or y = y1/J corresponding, as is seen from eq. 
(6), to the 50% ordinate of the CWD curve; this 
value, from eq. (6), is given by 

x1/, = 2 0  exp { [ ( n  + 1)/21 r2} 

Y v z  = yo exp I [(n + 1 ) / 2 1 4  

(8)  

(8’) 

or 

where yo = Kxo”. 
Equations (7) through (8’) show that the 

straight-line graphs allow the direct determination 
of only one of the distribution parameters: y or 

ay. As far as xo (or yo) and n are concerned, only 
a relationship between them is obtained, such as 
in eq. (8) or eq. (8’).  Hence it is possible to at- 
tribute an arbitrary x value to n and a correspond- 
ing xo (or yo) value can be calculated. Besides, 
it is a general analytical fact that a straight line 
can define only two independent parameters. 

Thus it is seen that in the case of a MW dis- 
tribution corresponding to eq. (2)  any property 
depending only on the DP distribution itself and 
on a function of the DP such as eq. (1) cannot 
independently determine n and 20.  

This last statement is confirmed by the following 
formulas deduced from eqs. (2)  through (8’) ; these 
formulas, according to the writer’s experience, may 
also be of some practical use in the evaluation of 
experimental data concerning polymers which are 
supposed to have a MW distribution of the type in 

The DP corresponding to the maximum of the 
differential distribution by weight (given as a func- 
tion of the DP) is 

x, = xo exp {ny2/2}  = xl/, exp { -s2} (9) 

The DP corresponding to the maximum of the 
differential distribution by number (as a function 
of the DPs), or the “most probable” DP, as de- 
fined in ref. 28, is 

x, = xo exp { [ ( n  - 11/21 7 2 )  

eq. ( 2 ) .  

= xl/, exp { - 2 4  (10)  

The corresponding maxima of the same differ- 
ential distributions, when they are given as func- 
tions of the variable t are 

2,’ = xo exp { [ ( n  + 1) /21  r2) = xl/, (9’) 
and 

x,’ = xo exp { (n /2)  y2} = xl/, exp { -s2} (10’) 

The number-average DP is 

xn = xo exp {(2n + 1 )  (r2/4)) 

= xl/, exp { -s2/2} ( 1 1 )  
The weight-average DP is 

xw = xo exp {(2n + 3) (y2/4)1 

= xl/, exp {s2/2} (12) 

The z-average DP  is 

xz = xo exp { (272 + 5)  (r2/4)} 

= xl/, exp {3s2 /2]  (13) 
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Their ratios (or the “unhomogeneity ratios”) are 

x,/xn = x 2 / x ,  = exp {yz/2) = exp Is2) (14) 

(hence such ratios depend only on the parameter r). 
If ym is the average value of the quantity y meas- 

ured for the whole polymer sample, 

ym = yo exp ((ar2/4) [a + 2(n + 111) 

= yl12 exp {s’*/2] (15) 

In connection with ym, there are some other for- 
mulas which may be useful, a t  least as a warning 
against using eq. (I), when it is intended for ideally 
homogeneous fractions, to calculate, for whole 
samples, average DP  such as x,, x,, x,, from the 
measured values of ym: it is quite obvious that 
this procedure is not correct, particularly for 
broad distributions, but nevertheless this fact is 
often neglected. Such formulas are 

Y m  = K exp { (r2/4) (a + 1)) 2% (16) 

Ym = K exp { (r2/4) (a - 1)) xwa (17) 

Ym = K exp { (r2/4) (a - 314 rZa (18) 

It is evident that the DWD formula suggested 
by Lansing and KraemeP is a particular case of 
eq. (2) when n = 0. The physical meaning of the 
Lansing-Kraemer formula is that the distribution 
by number of the macromolecules can be expressed 
by the normal error formula as a function of a 
variable which is itself a linear function of the 
logarithm of the DP. 

In a similar manner, the distribution formula 
suggested by Wesslau’ is a particular case of eq. 
(2) when n = -1. The physical meaning of 
Wesslau’s formula is that the distribution by weight 
of the macromolecules can be expressed as defined 
above . 

But it has been seen now that Feature A alone 
does not allow a choice of the exponent n, hence 
a choice between the two formulas. 

More generally it can be said that, if a DWD 
formula such as eq. (2) is valid, by introducing an 
auxiliary variable t defined by eq. (5), the DWD 
function is transformed into a function, eq. (6), of 
the Gauss type, and in a quite similar manner a 
new auxiliary variable : 

t‘ = [(2)’/*/rI (In (x/xo) - (n/2)r2) (5’) 
can be defined (also a linear function of In x) so 
that the differential function of the distribution 
by number: 

fi(x)dx = (l/z)w(x)dw 

is transformed into a function of the Gauss type. 
It is immediately seen that, by combining eqs. (2) 
and (57, under the normalization condition: 

,f, fi(z)dx = ,fZm fi(t’)dt’ = 1/x, (3’) 

which is equivalent to eq. (3), there follows: 

fi(t’)dt’ = (l/z,) [1/(2 n)’’’J exp { -tf2/2) dt’ (6’) 

Thus, when Feature A is verified, the differential 
distribution by weight as well as by number can be 
expressed by a Gauss formula as functions of some 
particular auxiliary variables which are, in their 
turn, linear functions of the log x. 

In the next section a possible physical meaning of 
such auxiliary variables will be suggested. 

Feature B 

From the experimental data, particularly of ref. 1, 
it appears that, for the majority of the examined 
LPP samples, the distribution parameters y and 
20 tend to be related with each other by 

x1/2 = P exP {QYj (19) 
where p and q are nearly constant coefficients for 
all samples. 

Attention has been already drawn5 to the fact 
that the coefficient p (a degree of polymerization) 
is of the order of magnitude of the unity, or more 
exactly that it is close to the value two. In subse- 
quent work it will be shown that the experimental 
data satisfy eq. (19) rather well, particularly for 
samples which better satisfy the straight-line 
condition termed Feature A. By assuming 

p = 2  (20) 

(21) 

it is found for nearly all samples that 

q = 2.75 f 0.25 

Feature C 

It states a neces- 
sary condition which must be satisfied by the quan- 
tity ym and by the distribution parameters s‘ 
and y1l2. The actual experimental data (see par- 
ticularly ref. 1 where y is the intrinsic viscosity) 
show that this condition, eq. (15), is poorly satis- 
fied: the values of ym calculated by means of eq. 
(15) are larger than those measured; the larger 
ym, the greater is this discrepancy. 

This fact is physically equivalent to the state- 
ment made by Tung4 that the Wesslau formula, 
hence also eq. (2), tends to exaggerate the high 
MW end of the distribution. 

Let us now consider eq. (15). 
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Feature D 

Wesslau8 has reached the noteworthy result of 
obtaining narrower MW distributions of LPP 
samples by means of chemical variations of the 
catalytic system. The new distributions obtained 
in this way also show stronger divergences from the 
straight line plots, as defined by Feature A. 

According to Wesslauls this result is in contra- 
diction with the “working hypothesis 1” assumed 
by him, that “the shape of the MW distribution is 
determined only from the heterogeneous character 
of the polymerization reaction” and that ((the 
heterogeneity of the catalyst is a necessary and su$- 
cient condition to obtain a polymer having a broad 
MW distribution” (our italics). This author iden- 
tifies this hypothesis 1 with the statement5 that 
the MW distribution of LPP shows an analytical 
picture quite different from the one of, e.g., free 
radical polymers, and : “that this difference must 
be explained as a consequence of the different kind 
of action of the new catalysts. . .” 

It is pointed out, now, that this statement, on 
which the present analysis is based, is quite different 
from hypothesis 1 of Wesslau; furthermore, in the 
writer’s opinion, such hypothesis cannot a priori 
be accepted because: (a) It is not permissible to 
take into account only one of the catalytic 
circumstances, assuming it as a ‘(necessary and 
sufficient condition” for determining the shape of 
the MW distribution. In  fact, this latter results 
from the contribution of many agents and condi- 
tions. It is, of course, (‘necessary” to take an 
outstanding catalytic feature into account; how- 
ever, this cannot be assumed (‘sufficient” as well. 
(b) It has been pointed out already that the most 
important feature is not that the MW distribution 
is broad or narrow, but the analytical type of the 
distribution itself. 

As far as the “heterogeneity” of the catalyst is 
concerned, in Sections I11 and V of this work some 
considerations will be made on this topic and on its 
possible influence on the MW distribution. 

Features C 
and D show that an interpretation of the MW dis- 
tribution which will allow the possibility of devi- 
ations from the type of distribution characterized 
by Features A and B is to be sought after. Such 
a distribution type, which was observed in the 
majority of the hitherto investigated samples, 
could then be considered as a sort of “normal” or 
“most probable” MW distribution in the case of 
these new catalytic systems. 

For now, the following is stressed: 

II1. GENERAL SCHEME OF THE POLYMERlZATION 
KlNETICS 

Here are listed the features of the polymerization 
rnechanism,g-lQ which are the most significant from 
the point of view of the present investigation: 

(I) The catalytic suspensions (or solutions) 
are characterized by the presence of ‘(actitre centers” 
(AC) having a long lasting and fairly constant (or 
slowly decaying) activity, even in the absence of 
monomer. 

Although in the case of the LPP samples con- 
sidered1-8 as well as in the stereospecific poly- 
merizati~ns,~-~g the heterogeneity of a t  least one 
of the catalytic components can be taken for 
granted, the writer’s opinion is that, at this point 
of the present analysis, it is an unnecessary limita- 
tion to suppose that the AC must be only hetero- 
geneous. 

(2)  The molecular growth occurring through 
the action of such AC can be interrupted by various 
growth breaking agents; at least four different, 
types of such agents have been distinguished.16 
The majority of them also behaves as reactivation 
agents, i.e., when a dead molecule is detached from 
its parent AC, the latter can again start the growth 
of a new macromolecule when fresh monomer comes 
in contact with it. 

(3) The average lifetime (or the average indi- 
vidual time of growth) of any single macromolecule 
appears to be very short, and the rate of growth of 
the chains seems to be very large (as compared 
with the rates of the other processes involved). 
According to Natta117 the molecular growth may be 
interpreted as a catalyzed stepwise addition, 
which can therefore take up high rates, a t  the 
limit, as a chain reaction. 

(4) It appearslg that a higher propagation rate 
is associated to the AC producing the longer poly- 
mer chains. In Ref. 19 such differences in rate are 
also associated to different stereospecificity. But 
in the case of polyethylene this last feature appears 
to be irrelevant; moreover, in the present analysis 
this resultlg will be purposely interpreted in t,he 
more general meaning expressed above. Thus, it 
may be considered at least as a working hypothesis, 
suggested from some experimental facts and until 
now, not contradicted by any of them. 

IV. INTERPRETATION OF THE FEATURES OF MW 
DISTRIBUTION 

Widely varying and often very broad MW dis- 
tributions have been found for free radical poly- 
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merizations in high pressure polyethylenes. 26,28*30-32 
They have been explained as a consequence of 
chain transfer to dead polymer giving rise to long 
branching. 28, 33--36 

But it is unlikely that chain transfer to polymer 
and the long branching connected with it play 
any relevant part in the building up of the poly- 
mers considered here, particularly of LPP, because : 
( I )  there is experimental e v i d e n ~ e ~ s ~ ~ , ~ ~  that LPP 
has a mainly linear and not branched structure; 
and (2)  chain transfer to polymer must be ruled 
out if the mechanism suggested by Natta, sum- 
marized in the former section, is accepted, as is 
done here. 

On the basis of such considerations it is assumed 
that: 

( 1 )  The macromolecules considered here are 
linear; hencez7 they (as well as their distribution) 
can be characterized by a single variable, the DP  
or any quantity which is connected to the DP by a 
one-to-one relationship. 

(2) It is possible to state such a one-to-one rela- 
tionship between the DP  and the “lifetimes” (or 
the times of growth) of the single macromolecules. 
Any macromolecule can thus be characterized by 
its DP  as well as by its lifetime (LT); the MW 
distribution too can be expressed as a function of the 
lifetimes. 

The interpretation of the MW distribution which 
will be given now is based on the consideration of 
the LT distribution and on a relationship between 
LT and DP. A more detailed analysis of the LT 
distribution on the basis of kinetic data will be 
sought in subsequent work. At this point a first- 
order approximation will be suggested, based on the 
following two hypotheses, which appear to be in 
agreement with the general kinetic scheme sum- 
marized in the former section. 

Hypothesis I 
Owing to the manifold growth-breaking and 

reactivating agents, the LT are distributed as a 
population (in the statistical meaning) of accidental 
events tending to distribute themselves at random 
about a mean. 

It is generally accepted that the most probable 
distribution of such events is expressed by the 
Gauss function (or normal error function). Hence, 
by indicating with the symbol z the LT, the number 
dfi of macromolecules having LT lasting from z to 
z + dz is expressed by 
dn = [N/VZO (2?r)”’] exp { -I/2[(z - ~ O ) / ( V Z O ) ] ~ )  dz 

(22) 

where N is the total number of macromolecules in 
the sample, zo is the mean (or the most probable) 
value of the LT, and v is a number such that the 
product vzo represents the “standard deviation” 
of the z from their mean value zo. 

It should be pointed out that in eq. (22) a nor- 
malization condition is implicit which differs from 
the one expressed by eqs. (3) and (3’); namely, it 
is stated 

Z dii = N or Z ( d f z / N )  = 1 (3”) 

Under such condition, eq. (6’) becomes 

1 
fz(t’) dt‘ = - exp {-- :} dt’ (6“) (27r) ‘Iz 

and the normalization factor A of eq. (2) will have 
the value: 

A = [1/Y(7d1’z1 [1/(X,’)”l (4’) 
instead of the value given by eq. (4), which can also 
be written : 

A = [l/y(7r)1/2] [1/(sm‘)”+’] (4”) 

Hypothesis I1 

By taking into account item (sj of Section 111, 
it is supposed that the macromolecular growth can 
be considered as a chain reaction, in the physical 
meaning of the term; that is, it is assumed that if 
the quantity x (the DP) is the result of such a 
reaction, the rate of growth of x is no longer con- 
stant, but it is an increasing function of the in- 
stantaneous value of x; in first approximation, the 
rate is assumed proportional to the function, 
namely 

dx = hxdz (23) 
where h (a reciprocal time) is the rate of the relative 
growth. The integral of eq. (23) is 

x = a exp (hz)  (24) 

where a is the initial degree of polymerization. 
From the results obtained by Natta and co- 

w o r k e r ~ , ~ ~ , ~ ~  it appears that the activator radical 
is found to be incorporated within the macro- 
molecular chain, and that the most frequent growth 
breaking and reactivating agents are those resulting 
from chain transfer to monomer or from the action 
of the organometallic activator (whose radicals 
have dimensions of the same order of magnitude of 
the monomer units14-”). Hence, a value close to 
two can be expected for a, namely close to the value 
found by experiment of the coefficient p in eq. (19)- 
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By accepting Hypothesis I, hence eq. (22), the 
latter can be compared with eq. (6”). It is immedi- 
ately seen that they become equal if it is assumed 
that 

So, by combining eqs. (22) and (25), it follows: 

w (x) d.c 
dx 

a(x) dx = 

where A’ is defined by eq. (4’) ; eq. (2’) is equivalent 
to eq. (2), when it is taken into account that the 
normalization condition of eq. (2) is eq. (3) and the 
one of eq. (2’) eq. (3‘). 

It is to be pointed out that eq. (25) attributes to 
the auxiliary variable t‘ the physical meaning of 
being a particular measure of the LT, namely, 
their relative deviation from their mean value zo. 

Now also Hypothesis I1 is taken into account; it 
is immediately seen that eq. (25) satisfies the dif- 
ferential equation (23)) which is the analytical ex- 
pression of this hypothesis, when it is stated: 

y = (2)’/’ hvzo (26) 

Hence Hypothesis I1 is already implicit in eq. (25). 
By comparing eqs. (25) and (21), we get: 

a = xo exp { (ny2/2) - hzoj (27) 

When eqs. (8) and (10’) are taken into account, 
from eq. (27) the eq. (26) and the two following 
equivalent relationships are obtained : 

(2% xp’ = a exp { hzo) 

(29) 

Equation (28) means that when z = zo, the DP  
takes up its most probable value; this result is con- 
sistent with the present interpretation. 

Hence, from Hypotheses I and 11, a MW dis- 
tribution showing Feature A is obtained. But 
eq. (29) states a relationship between xl/, and y 
which can be confronted with eq. (19), the ex- 
pression of Feature B. 

It has already been observed that, by taking 
u = p ,  the experimental value of p is justified; 
but the exponent in eq. (29) is substantially djffer- 
ent from the one of eq. (19)) the latter being a 

linear expression of y while the former is a second- 
order expression of y. 

Hence Feature B is not in agreement with 
Hypotheses I and 11. A physical meaning of this 
discrepancy will now be sought. 

Although doing this is not in agreement with 
Hypothesis I (where the distribution by number 
is concerned), the variable t will be put in eq. (25) 
instead of the 1‘: i.e., 

x n + l  ____-  In - - - y2) (25’) (2 - 20) 
UZIJ 20 2 

In the same manner as for t’, eq. (26) is obtained, 
together with 

xp’ = a exp { - (y2/2) + hzo} (30) 

and 

xl/, = a exp { y/(2)”’ ~1 = a exp (s/v) (31) 

Equation (31) is equivalent to eq. (19)) when it is 
defined: 

g = 1/(2)’/2 v (32) 

But eq. (30) is no longer consistent with the sig- 
nificance of “most probable DP” which is stated by 
this interpretation, and which was no longer to be 
expected, since Hypothesis I has been modified. 

It will now be seen that Feature B is in agree- 
ment with a new assumption which can be termed; 
“modified Hypothesis I,” whose physical meaning 
will be stated now. 

In the next section some further criticism will be 
given of the hypotheses introduced here; but for 
now it is possible to presume that the actual dis- 
tribution of the LT instead of being expressed by 
the simple Gauss formula, is “perturbed’) by factors 
limiting the chain growth; let us suppose that the 
longer chains have a higher probability of being 
detached from the parent AC than the shorter ones. 
This can bring about negative skewness in the Ll’ 
distribution, as well as a displacement of the maxi- 
mum 2,‘ toward the lowest DP. 

Let us suppose, further, that such “perturbation” 
of the simple Gauss distribution can be represented. 
in a first approximation, by a factor proportional 
to the reciprocal DP; instead of eq. (22) it can be 
stated : 

C z - 20 
d n  = X - exp { -+( F)*} dz (33) 

where C is a normalization factor. It is immedi- 
ately seen that eq. (33) is the analytical expression 
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of the modified Hypothesis I; indeed, it can be 
written : 

xda = dw = Cexp { -- ;(“ - ;ozo)’} d.2 (33’) 

The left-hand side of this equation is the differ- 
ential of the distribution by weight. Hence, when 
the modified Hypothesis I, namely eq. (33), is ac- 
cepted, eq. (25’) must be stated instead of eq. (25). 
As is shown by eq. (31), Feature B is just a con- 
sequence of eq. (25’). 

Equation (30) must be now justified. By sub- 
stituting eq. (26) in eq. (31): xIl2 = xo and x,‘ = 

If eqs. (8) and (10’) are taken into account, 
both these last relationships are possible only if 
n = -1. 

It is seen, thus, that the consideration of Feature 
B, together with the present interpretation, allows 
an evaluation of the exponential parameter n, 
which was not possible on the basis of Feature A 
alone. 

Furthermore, a physical meaning of n is now 
suggested: n should be a measure of a particular 
“perturbation” in the LT distribution, with respect 
to the simple Gauss distribution. This latter is 
characterized by n = 0, and the value xo = a exp 
(hzo ) ,  as stated by eq. (lo’), is the most probable 
DP  only for the unperturbed LT distribution; but 
xo no longer coincides with x,’ when n # 0 (or for 
perturbed LT distributions). Feature B indicates 
a negative value of n, close to - 1. 

zo exp t - 1 * 

It is interesting to note the following: 
(a) A negative exponent n has a physical sig- 

nificance analogous to that of a negative skewness in 
the LT distribution; and, inversely, positive n corre- 
sponds to positive skewness. Perturbations of the 
Gauss distribution which can be represented by 
xn bring about a displacement of the maximum 
in the differential LT distribution, rather than a 
true skewness of it. In  subsequent work the 
polydispersion of free radical polymers will be dealt 
with by means of the study of the LT distribution 
of growing chains. It will be seen that in free 
radical polymerization the most frequent instance 
is that of positive skewness or positive n values, 
while in the catalytic systems considered here it 
appears that the negative n values are the rule. 

( b )  The present interpretation and the conse- 
quent evaluation of the n exponent state that the 
first distribution formula proposed by Wesslau, 
with n = - 1, is the most valid, giving to the param- 
eter xo its true physical meaning, as specified 

here, although in ref. 1 the choice of n = -1 was 
not justified. 

Some considerations will be made about the 
parameter q of eq. (19); eq. (32), together with the 
experimental results summarized by eq. (21) , 
states that the unperturbed “most probable dis- 
tribution” defined here is characterized by standard 
deviations which are all about l/4 of the mean 
value of the LTs. 

As far as the field of variability of the LTs are 
concerned, in the integrations carried out for nor- 
malization it is assumed that t and t’ vary between 
- ~3 and + ~3 , corresponding to x varying between 
0 and + a. But the limits for z are obviously 
0 and + ~3 ; hence eqs. (25) and (25’) can be ac- 
cepted only if the value: exp {-l/@) is prac- 
tically equal to zero. By supposing that the limit 
of accuracy in the experimental determination of 
the weight per cents in the CWD curve is 1% 
(which in practice is a rather stringent limit), it 
follows that 

[1/(2~)”’] f L-;’’) exp { - ‘ /d2 ) }  dt < 0.01 

which happens when: l / v  > 2.33 or q > 
1.55. 

It is seen from eq. (21) that for those LPP sam- 
ples which show Features A and B sufficiently to 
allow the determination of the parameter q, this 
last condition is largely satisfied, hence the accu- 
racy in the present formulation is greater than that 
requested by the actual experimental accuracy. 

Lastly, it is to be noted that the formulas stated 
in this section allow the determination of the prod- 
uct hzo (a number), but an independent deter- 
mination of the factors h and zc is not possible; it is 
expected, indeed, that these typically dynamic 
parameters can be det,ermined only by means of in- 
vestigations on the polymerization kinetics, and 
that the study of the distribution alone (depending 
on the ratio of the kinetic parameters) is not suffi- 
cient for this purpose. On the contrary, it is seen 
from eqs. (26) and (32) that the statistical param- 
eter v is directly related to the distribution features. 

IV. CRITICISM OF HYPOTHESES 1 AND I1 

It has been already suggested that Hypotheses I 
and I1 and the corresponding eqs. (22) and (23) 
are simplifications (probably, oversimplifications) 
of the actual phenomena occurring in these poly- 
merization processes; they must be considered 
more properly as limit-hypotheses (Grenzhypo- 
thesen). 
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In  the former section it was seen that Hypothesis 
I had to be modified to fit in with Feature B, namely 
it has been necessary to introduce a particular 
correction or “perturbation” of the simple Gauss 
distribution of the LTs. Similarly, other kinds 
of perturbations can be expected, different from 
the ones depicted by a factor xn. This can explain 
the experimental facts summarized as Feature D; 
in particular, the results of Wesslaus indicate per- 
turbations of the leptokurtic type. Only a more 
detailed analysis of the LT distribution and of its 
dependence on the polymerization kinetics may 
allow to state a surer connection between the poly- 
merization conditions and the distribution features. 

Hypothesis 11, a t  the present state of investiga- 
tions, appears the one less firmly supported by ex- 
perimental evidence, the strongest evidence con- 
sisting, perhaps, in the fact that it allows a con- 
sistent analytical interpretation of the observed 
distribution features. 

It may be that the idea of a catalyzed stepwise 
addition proceeding as a chain reaction can be 
accepted more easily remembering the advice 
given by S e m e n ~ v , ~ ~  that one must not deal “ex- 
clusively with the elementary chemical act” but 
that one has to consider the whole “system of ele- 
mentary acts, i.e., all problems connected with 
actually occurring chemical changes.” In the 
present instance, it may happen that, while the 
mechanism of any single elementary addition act 
remains unchanged, the probability of its occur- 
rence can be modified (in the given case, increased) 
by the presence of the already formed but still 
growing macromolecular chain. 

Such an “autocatalysis” can be produced, e.g., 
as follows : 

(a) Any single exothermic addition reaction may 
bring about a local overheating in the surroundings 
of an AC. Something of that sort has been ob- 
served by Natta and Mantica40 in the case of the 
anionic stepwise addition of ethylene oxide to 
alcohols, where the reaction rate of each successive 
step is higher, owing to an activation attributable 
to the preceding highly exothermic step. 

( b )  As was suggested to the writer by Luzzati141 
the already formed and growing polymer molecule 
may increase the solubility of the monomer in the 
surroundings of the parent AC; in this way, the 
local monomer concentration, hence the probability 
of occurrence of the single addition reactions is in- 
creased. 

It is evident that the greater is the rate of chain 
propagation (which was actually found to be 

high1**19), the more important are both these effects. 
Furthermore, they must be stronger also when the 
ACs have a more stationary position; this may 
happen when the ACs are heterogeneous, that is 
when they are bonded to a solid surface or to a 
particle having at  least a Brownian size. Hence, 
it appears that the heterogeneity of the catalysts 
is more clearly related with Hypothesis 11, con- 
cerning the law connecting the DPs with the LTs; 
but it is to be expected that the heterogeneity of 
the catalysts plays a relevant part also in the de- 
termination of the statistics of the LT distribution, 
considered by Hypothesis I. 

Further, it is to be expected that both these 
effects of “autocatalysis” of the growing chain 
diminish when the chain grows beyond certain 
limits, that is, that these effects undergo saturation. 
It follows that the rate of the macromolecular 
growth, beyond a certain chain length, must be less 
than the one resulting from eq. (23). This fact 
is confirmed by what has been summarized as 
Feature C. As was already observed by Wesslau,’ 
an overestimation of the high MW end of the dis- 
tribution (where eq. (1) itself, perhaps, can no 
longer be used) is more noticed in the determi- 
nation of the average intrinsic viscosity of the whole 
sample than in the overall shape of the MW dis- 
tribution curve (Feature A). 

Finally, it is observed that the distribution for- 
mula suggested by Lansing and Kraemer has been 
found of little use to represent the MW distribution 
of synthetic polymers obtained by the free radical 
or by the polycondensation mechanism. The 
theories of such polymerizations, developed par- 
ticularly by F l ~ r y , ~ ~  led to analytically different 
formulas, which proved to be in better agreement 
with the experimental data. 

Lansing and Kraemer have found that their for- 
mula is suitable for describing the MW distribu- 
tions of natural gelatins (as was obtained from the 
experiments of Krishnamurti and S ~ e d b e r g ~ ~ )  
and of other natural polymers; similar results, con- 
cerning also natural polymers, have been recently 
obtained by Ciferri and D a ~ n e . ~ ~  

Although the polydispersity of the investigated 
natural polymers is in general rather narrow, hence 
a MW distribution formula can be stated in a less 
reliable way, this fact may bring some further 
support to the idea of a qualitative analogy existing 
between the catalytic methods considered here and 
the polymerizations occurring in some biologic 
processes. A quantitative difference is apparent, 
which is expressed by higher values of the distribu- 
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tion parameter y in the synthetic new polymers 
than in natural polymers. From eq. (26) it ap- 
pears that, for equal values of the product hzo 
(namely, for equal average extent of polymeriza- 
tion), larger values of y mean larger u or larger 
standard deviations, hence greater randomness in 
the synthetic processes than in the biological ones. 

Thus, from the present interpretation of the dis- 
tribution features of polymers obtained from the 
new catalytic processes considered here it appears 
that it is possible, as already suggested by Natta,45 
that a deeper knowledge of such processes can bring 
new light on some polymerizations (which, too, are 
often stereospecific) occurring in living matter. 
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Synopsis 
Some features of the molecular weight distributions found 

by experiment for low pressure polyethylenes are examined; 
an analytical interpretation of them is suggested which is 
in agreement with the polymerization mechanism resulting 
from kinetic investigations of Natta and co-workers. Such 
interpretation is based on the consideration of the distribu- 
tion of the individual times of growth (or of the “lifetimes”) 
of the single macromolecules. It is assumed that ( a )  these 
lifetimes tend to be distributed according to  the Gauss 
formula, such as a series of events tending to be distributed 
a t  random about a mean; and ( 6 )  the growth of any single 
macromolecule proceeds a t  a rate which can be considered 
as the rate of a chain reaction. Possible deviations from 
such simplified scheme are taken into account. A distribu- 
tion formula of a generalized Lansing-Kraemer type is de- 
duced, giving an explanation of all the observed features of 
the molecular weight distribution. 

RbumC 
On examine quelques particularites des distributions des 

poids moleculaires observees dans des polyethylenes de 
basse pression. On en donne une interpretation analytique 
qui est en accord avec le mecanisme de formation rbultant 
des etudes cinetiques de Natta e t  collaborateurs. Cette 
interpretation est fondee sur la consideration de la distribu- 
tion des dudes de propagation individuelles (ou “durees de 
vie”) de chaque macromolecule. On suppose que: ( a )  
ces durees de vie tendent 3. Ctre distribuks eelon une formule 
de Gauss, comme des evenements qui tendent a se dktribuer 
au hasard autour d’une moyenne: (a) la croissance de 
chaque macromolecule marche a une allure qui peut Ctre 
assimilee a celle d’une reaction en chalne. Des deviations 
possibles de ce schema simplifie ont Bt6 envisagkes et  intro- 
duites dans le calcul. On deduit une formule de distribution 
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du type de Lansing-Kraemer g6nkralis&, qui fournit une 
explication de toutes les caractkristiques de distribution des 
poids mlkoculaires. 

Zusammen fassung 
In der vorliegenden Arbeit werden einige Eigentumlich- 

kei ten der experimentell erhaltenen Molekulargewichts- 
verteilung von Niederdruckpolyiithylen niiher untersucht 
und eine analytische Deutung derselben, die mit dem Bil- 
dungsmechanismus entsprechend den kinetischen Unter- 
suchungen von Natta u. Mitarb. in Ubereinstimmung 
steht, wird vorgeschlagen. Dieser Deutung liesen gewisse 
Annahmen uber die Verteilung der individuellen Wachstums- 

dauern (oder “Lebensdauern” ) der einzelnen Makromole- 
kule zu Grunde. Es wird angenommen, dass: ( a )  diese 
Lebensdauern einer Gauss’schen Verteilung zustreben, so 
wie eine Reihe von Ereignissen, die sich zufiillgerweise um 
einen Mittelwert verteilen; ( b )  der Verlauf des Wachstums 
der eineelnen Makromolekule mit dem einer Kettenreaktion 
verglichen werden kann. Mogliche Abweichungen von 
einem solchen vereinfachten Schema werden in Betracht 
gezogen. Eine Verteilungsfunktion vom Typus einer 
verallpcmeinerten Lansing-Kraemer-Verteilung wird abge- 
leitet. Damit ist eine Deutung aller beobachteten Eigen- 
tumlichkeiten der MG-Verteilung moglich. 
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